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MEAN FLOW AND TURBULENCE MEASUREMENTS

IN A MACH 5 FREE SHEAR LAYER

Richard D. Wagner

Langley Research Center

SUMMARY

A study of the time-averaged mean flow and the turbulence in a Mach 5 free tur-

bulent shear layer has been performed. When the experimental data were reduced with

the assumption of constant static pressure through the shear layer, the mean-velocity

profile in similarity coordinates was in good agreement with the-low-speed velocity pro-

file. The intensities of the velocity fluctuations were about a factor of 2 lower than the

low-speed measurements but with the maximum velocity fluctuations occurring in the

same regions of the supersonic and low-speed shear layers. A large density fluctuation

was observed in the outer part of the shear layer near the boundary of the shear layer

and the potential core.

INTRODUCTION

The mechanics of free turbulent mixing attracts considerable interest because of

its practical importance in the problems of aerodynamic jet noise and supersonic com-

bustion. In each of these problems a detailed knowledge of both the time-averaged mean

flow and the flow turbulence is required. Although progress has been made in the pre-

diction of the time -averaged mean flow in free turbulent mixing problems (ref. 1), the

capability for the prediction of the flow turbulence has not progressed correspondingly;

the current theoretical approaches have relied by and large upon phenomenological models

for the turbulent mixing. At present, the analytical and computational tools available to

the theoretician appear to be inadequate to provide detailed knowledge of the flow turbu-

lence, and experimental data are needed to guide future analytical developments.

The mechanics of free turbulent mixing at low speeds have been studied in detail

and are well documented in the literature (refs. 2 and 3). Studies of free turbulent mixing

in supersonic flow, where large density gradients in the flow may significantly alter the

character of the turbulence, have been primarily limited to mappings of the time-averaged

mean flow, and virtually no detailed information is available on the characteristics of

the turbulence in supersonic free turbulent mixing. The results of the limited mean flow

measurements (ref. 4) (such as, the greatly diminished spreading rate of the supersonic

free turbulent shear layer) indicate that large differences may be expected between the

low-speed and supersonic turbulence field in free shear layers.



The present paper reports the results of experiments conducted at the Langley

Research Center to determine both the time-averaged mean flow and the flow turbulence

in the near field of a Mach 5 free turbulent jet. The measurements were made by com-

bining the results obtained in surveys of the jet shear layer with a pitot probe and a

constant-current hot-wire anemometer.

SYMBOLS

Aw  overheat parameter

a speed of sound

b velocity difference half width, y(u = ue/ 2 ) - y(u = 0.95ue)

c wire thermal capacity

D nozzle-exit diameter

d wire diameter

E' finite-circuit parameter

e wire voltage fluctuation

f(M, Me) nondimensional Mach number function

h film coefficient of heat transfer

I wire current

K = a log Rw/a log Tw

k thermal conductivity

L wire length

M Mach number

"M time constant

m mass flow

Nu 0  wire Nusselt number

P wire power

p static pressure

Pt, 1 free-stream stagnation pressure

Pt, 2 pitot pressure

R gas constant

Rex Reynolds number

Re 0  wire Reynolds number
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Rf reference resistance

Rr recovery resistance

R ,  wire resistance

R(M) Rayleigh function

RmT = m'T /i it

Rpu = p'U'/p" "

r = Aem/Aet

T flow temperature

Tf reference temperature

Tr recovery temperature

T,  wire temperature

u flow velocity, axial component

V mean wire voltage

Vs  source velocity

v flow velocity, transverse component

x,y Cartesian coordinates

x0  virtual origin

y* translated y-coordinate

yp pressure trough edge

af resistivity coefficient at Tf

a resistivity coefficient at Tr r

7 specific -heat ratio

Yf nonlinear resistivity coefficient at Tf

Tr  nonlinear resistivity coefficient at Tr
Aem mass-flow sensitivity

Aet total-temperature sensitivity

5p shear-layer edge, potential core

e finite-circuit factor

recovery factor
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I viscosity

similarity coordinate

p density

a entropy perturbation

r vorticity perturbation

Twr temperature loading

Superscripts:

root mean square (rms)

time -averaged value

instantaneous value

Subscripts:

e shear-layer edge, potential core

1 local value

Nw  nozzle-wall value

r recovery value

t total condition

APPARATUS AND CALIBRATIONS

Test Facility

The measurements of the mean and fluctuating flow were taken in the near field

of an adiabatic Mach 5 free jet that issued from a 10. 6-cm-diameter nozzle. The nozzle
was installed in the nozzle test apparatus at the Langley Research Center, and a schematic

of the apparatus is shown in figure 1. The nozzle and jet were enclosed in a 61- by 61-cm

vacuum chamber, and the jet exhausted into a diffuser approximately 42 cm downstream
of the nozzle exit. An auxiliary air supply was used to bleed air into the vacuum chamber
and, thereby, match the chamber and nozzle-exit static pressures. The nozzle-wall
boundary layer was turbulent.

Instrumentation

The pitot probe was made of stainless-steel tubing, which was flattened and ground

at the tip, so that the tip was 0. 165 cm wide and about 0. 25 mm across the flats. The
wall thickness at the tip was about 0. 063 mm. Since the shear layer at the survey station
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(x = 26.7 cm) was about 2 cm thick, the shear-layer-to-probe-tip thickness ratio was

large and should have a negligible effect on the measured pitot pressures.

The hot-wire system was a commercially available constant-current anemometer

with a frequency response up to 500 kHz. The hot-wire probes consisted of two needles

that were crimped into 0.32-cm-diameter steel tubing with the needle ends insulated from

the tubing by Teflon sleeves. The needle tips were spaced about 0. 25 cm apart. Nickel-

plated platinum wire was silver soldered across the needles. A central portion of the

wire was etched to remove the nickel coating; the remaining platinum wire was 5 P m in

diameter and about 0.75 mm long (an aspect ratio of about 150). About a quarter-circle

slack was formed in this, the sensitive portion of the wire, to avoid strain-gage effects

(ref. 5).

Hot-Wire Calibrations

All data to be discussed (with the exception of some experiments to look at the

hot-wire signal spectra) were obtained with a single wire. This wire was first checked

for strain-gage oscillations by placing it in a hypersonic flow which had sufficient turbu-

lence to excite strain-gage oscillations; none were present. The wire was then oven cali-

brated to determine its resistance variation with temperature. The temperature depend-

ence of the electrical resistance of platinum wire is accurately represented by (ref. 6)

Rw =Rf 1 + f (Tw - Tf) + [f (Tw Tf)] 2 (1)

where Rf is the wire resistance at a reference temperature Tf (herein taken as 273 K),

and af and Yf are the temperature sensitivity coefficients. The temperature range of

the calibration oven was insufficient to determine accurately f, and the oven was used

only to determine a f. The value found agreed with that given by Morkovin (ref. 6),

af = 3. 8 x 10 - 3 per K. The approximation that is suggested by Morkovin (ref. 6),

f = -0. 045, was used.

After oven calibration, the wire was flow calibrated in the potential core of the

Mach 5 nozzle for heating rate and recovery temperature variation with flow conditions.

This calibration was used in the mean flow data reduction and in the calculations of the

wire sensitivities for turbulence measurements.

For M > 1.2, the hot-wire Nusselt number Nu 0 = hd/kt and the hot-wire recovery

factor 77= Tr/T t are independent of Mach number and depend only on the flow Reynolds

number Re 0 = pud/ mt. The calibration of the wire used in the present study is shown

in figure 2.

For the calibration range

Nu 0 = -0. 08 + 0. 55 ve 0  (2)

and
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7 = 0.95 + 0. 155/Re 0
1 .3 2  (3)

To avoid time-consuming measurements of the hot-wire time constant at each

hot-wire operating point, the procedure described in reference 5 was used to measure

the wire heat capacity as part of the flow calibration, and the hot-wire signal compen-

sation procedure of reference 5 was used; that is, the hot-wire heat capacity was deter-

mined from the equation developed by Morkovin (ref. 6)

c = (a rRr/Aw) I2 (1 + 2 Aw )/ [1 - 2 'r (Rw - Rr)/Rr] (4)

where Aw is Morkovin's overheat parameter Aw = 1 (a log Rw/a log I), I is the hot-

wire current, e is the finite-circuit factor, and M is the hot-wire time constant. As

part of the flow calibration, at each Re 0, the wire time constant was found at one current

by the square-wave heating technique and c was calculated from equation (4). An average

of the resulting heat capacities (which were the same to within + 5 percent) was used to

calculate the hot-wire time constants from equation (4) for operating conditions in the

shear-layer experiments. In the shear-layer experiments a single value of the time con-

stant was set into the compensating amplifier at all currents and the rms data were cor-

rected with the formula

etrue eamp = mtrue/ amp (5)

where etrue is the rms voltage at the correct compensation time constant true' and

amp is the rms voltage measured in the tests with the compensating amplifier set at

Wfamp. This procedure leads to some signal distortion at low frequencies on the order
of the wire rolloff frequency (always less than 500 Hz), but this effect should be negligible.

DATA REDUCTION

Mean Flow Measurements

In principle, the combination of mean measurements which were taken (pitot
pressure, hot-wire power, and wire recovery temperature) is sufficient to determine
all the flow properties in the shear layer. The calibration equations can be inverted to
give

Re 0 = 3.305Nu0
2 + 0.529Nu 0 + 0.02117 (6)

where Nu 0 = arRr (dP/dRw)r/( nLkt) and (dP/dRw)r is the power-resistance derivative
at Rw = Rr, the wire resistance at zero current. Since Tr = Tr(Rr) (see eq. (1)), then
with equation (3)

Tt =Tr/(0. 95 + 0. 155/Re 0 1 .32) (7)

(For convenience, in discussions of the mean flow measurements, the superscript bar
is not used, and all quantities are time-averaged values. ) If the hot-wire power is
measured at several currents, (dP/dRw)r and Rr can be found; then a simple iteration
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scheme can be used to find Re0 and Tt. Other flow variables can then be found. Since

Reo t pM - 1(8)

pU= d at 1+ 2 M (8)

and P/Pt, 2 = R(M), the Rayleigh pitot formula, it can be shown that

Re0 "t JrT 12Re 0 = - TR(M)M V1 + '-  M (9)dpt, 2  2

By either graphical solution or by iteration the local Mach number can be found.

The static pressure, density, and velocity can then be directly calculated. However, the

right-hand side of equation (9) is a very weak function of Mach number above about

M = 2, and small errors in the measured quantities can lead to large errors in the pre-

dicted Mach number. This condition is illustrated in figure 3 wherein equation (9) has

been nondimensionalized with the shear-layer-edge conditions so that

Pt, l,e Reo,l Tt,12(Tt,e + 198.6) M1 1 + 0.2M12(l + 0.2Me2) 7M 12 - Me5/2

Pt,2,l Re,e Tt,e 2 (Tt,l + 198.6) Me(1.2M2)7/2 f(MMe)

where the Sutherland viscosity law has been used. This shortcoming of the present method
of determining the mean-flow variables has been previously noted by Morkovin (ref. 6)
and is discussed further in a subsequent section herein.

Turbulence Measurements

With the thermal inertia of the hot wire accounted for in both the time-constant
prediction and signal correction, as noted in the section entitled "Instrumentation," the
basic hot-wire equation that shows the fundamental sensitivity of the hot wire to mass
flow and total-temperature fluctuations is

e'/V= aet Tt'/Tt - nem m'/m (10)

where e', Tt', and m' are the instantaneous fluctuations in the hot-wire voltage, the
total temperature, and the mass flow, respectively; V, Tt, and m are the time-
averaged values. The hot-wire sensitivities are given by Morkovin (ref. 6) as

Aem = E' [Aw a log Nu 0/ log Re - (Aw/rwr) a log a log Re0]

Aet = E'K + Aw [K - 1.86 + 0.76 a log Nu 0 /a log Re0 -(0.76/wr) a log /a log Re (11)
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where the Mach number independence and appropriate constants for air have been

inserted. The finite-circuit parameter is E', and the hot-wire temperature load-

ing is Twr =(Tw - Tr)/Tr.

As suggested by Kovasznay (ref. 7), modal analysis of the rms voltage fluctuations

can be made by observing a virtual total-temperature fluctuation e/(VA et) at several

sensitivity ratios r = Aem/Aet. From equation (10)

[e/(VAet 2  (tTtt) 2 - 2r(Tt/Tt) (m/m) RmT + r2 (m/m)2 (12)

where RmT is the correlation coefficient for the mass flow and total-temperature fluc-

tuations. To generate mode diagrams, the hot wire was operated through 7 to 10 currents;

that is, 7 to 10 values of r. This procedure yields redundant information to determine

the three unknowns, Tt, m, and RmT.

TEST CONDITIONS

The jet shear layer was surveyed at a station 26.7 cm downstream of the nozzle

exit. All tests were performed at a stagnation pressure and temperature of 79.3 N/cm 2

and 360 K, respectively. The corresponding unit Reynolds number was 0. 175 x 106 per

cm, or Rex = 4. 68 x 106 based on the distance x from the nozzle exit to the survey
station. The Mach number at the shear layer edge was 4.99.

To determine to what degree the flow at the survey station was a fully developed
turbulent flow, reference to the results of Morrisette and Birch (ref. 4) is made. A

result of their mapping of the mean flow (at the same stagnation pressure and temperature)

is shown in figure 4 wherein lines of constant-velocity ratio are plotted against axial
distance and Reynolds number. For Rex > 1. 5 x 106, the data display the linear spreading

that is often believed to be indicative of fully developed turbulent flow. However, measure-

ments made by Morrisette and Birch (ref. 4) at a higher stagnation pressure also show

linear spreading but at a lower spreading rate; they interpret this as an indication of
incomplete development of the flow. While this conclusion is probably correct, for the

present survey at Rex = 4. 68 x 106, the local mean flow should be nearly fully developed;
however, this may not assure full development of the turbulence field. To determine to

what extent the flow turbulence is fully developed requires surveys and mappings of the
flow turbulence beyond the intended scope of the present study.

RESULTS AND DISCUSSION

Mean Flow Measurements

The basic mean flow data obtained from the pitot probe and from iteration of the
hot-wire data are shown in figure 5. The pitot-pressure and Re 0 profiles are similar,
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with each displaying strong gradients near the shear-layer edge (high-velocity side).
Near the shear-layer edge a slight overshoot above free-stream total temperature is

observed in the total-temperature profile; deep in the shear layer the total temperature

approaches the nozzle-wall temperature. Kistler (ref. 8) has measured similar over-

shoots in total temperature in the outer region of attached turbulent boundary layers and

temperature deficits near the wall for 1.72< M < 4. 67 and adiabatic walls. A total-

temperature deficiency at an adiabatic wall is expected for air since the laminar Prandtl

number is less than 1 and laminar transport is important near the wall. These data have

been used to compute the Mach number function f(M, Me), and the profile of this func-

tion is shown in figure 6. Also shown in figure 6 are the distribution of f(M/, Me) which

would be obtained if the static pressure is assumed constant through the shear layer

(equal to pe) and a profile for a discontinuous static pressure: a static pressure trough

with p1 = Pe/ 2 at the outer edge of the shear layer. Figure 6 illustrates the fundamental

difficulty in attempting to use the present combination of variables to determine the mean

flow properties. Because of the sensitivity of the Mach number to the combined measured

variables, small errors in measured quantities on the order of ±5 percent can lead to

differences in static pressure as great as 100 percent.

The cluster of data points from 6 P <y <y suggests that a trough in static
p p

pressure may exist in this region. The normal momentum equation for turbulent shear

flows suggests that pressure gradients can occur in hypersonic turbulent shear flows

because this equation states that (ref. 9)

a p/ay = - a(P y

where v' is the normal-velocity component fluctuation. This equation can be integrated

and nondimensionalized with the result

e /P 1 - Me 2 ( / e) ( v ue2)

Hence, if the turbulence intensity is not greatly diminished at high Mach numbers, then

the Mach number squared factor would imply increasingly significant pressure variations

in shear layers as Me increases. Obviously, the present data do not have the precision

needed to resolve whether static-pressure variations occur, and the data to be presented

were reduced by assuming constant static pressure.

The mean velocity, density, and temperature profiles computed by assuming con-

stant static pressure are shown in figure 7. Measurements were made to a point in the

shear layer where the local Mach number had decreased to about 1. The subsonic and

transonic portions of the shear layer were not surveyed since the hot-wire calibration

becomes Mach number dependent therein. (Note that some error in the data point at

y , 3.0 cm can be expected since the flow is transonic there.) Over the survey region

a substantial density variation occurs with the density decreasing by about a factor of 5.
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The velocity profile is again presented in figure 8, wherein the transverse coordinate has
been redefined and nondimensionalized by the velocity defect half width of the shear layer,
b = y(u = ue/2) - y(u = 0. 95ue). Therein, t = y*/b = [y(u = ue/2) - y(u)]/b. This non-
dimensionalization enables a comparison of the present hypersonic shear-layer velocity

profile with the incompressible profile obtained by Liepmann and Laufer (ref. 10) which

is also shown in figure 8. The linearized similarity solution (ref. 3), the error integral,
is included in the figure. The two sets of experimental data agree quite well and thus indi-
cate no appreciable effect of compressibility on the mean flow velocity profile in similarity
coordinates. However the spreading-rate parameter a for the compressible shear

layer is about three times larger than the low-speed a (see ref. 4); the compressible

free shear layer spreads very slowly compared with the incompressible free shear layer.
(The parameter a is the constant in the similarity variable t =a y*/(x - x0 ) where x 0

is the virtual origin of the turbulent shear layer.)

Turbulence Measurements

Potential core. - A profile of the hot-wire virtual total-temperature fluctuations

at 26.7 cm downstream of the exit is shown in figure 9. The data were taken from signal

mode diagrams at hot-wire operating points corresponding to r = 0. 5. At the boundary

of the shear layer and the potential core, y - 1 cm, the hot-wire signal shows a rapidly
increasing turbulence intensity with distance into the shear layer. In the potential core
of the jet the turbulence intensity is nearly constant. To examine the nature of the turbu-
lence in the potential core near the shear-layer edge, three mode diagrams of the hot-
wire signals in the potential core are shown in figure 10: x/D = 0, x/D = 1. 45, and
x/D = 2. 54. All three mode diagrams are linear. From equation (12) it follows that
RmT = -1, and the slopes of the mode diagrams give the rms of the mass flow fluctuations,
and the intercepts r = 0 yield the rms of the total-temperature fluctuations; these quanti-
ties are listed in table I. The linear mode diagrams are consistent with the interpretation
of the flow disturbances as being radiated sound (ref. 11). The analysis of Laufer (ref. 11)

can be used to calculate the intensity of the sound p/p, and this is included in table I.

TABLE I.- FLUCTUATION LEVELS IN POTENTIAL CORE

x/D mm, Tt PP5

0 1.12 0.08 2.16
1.45 3.34 .30 4.89
2.54 3.36 .12 4.79
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The intensity of the sound radiated from the turbulent nozzle-wall boundary layer

and sensed by the hot wire at the nozzle exit is about 2. 5 times smaller than the sound

intensity measured in the potential core downstream of the nozzle exit and presumably

radiated from the free turbulent shear layer. The reason for this apparently more

efficient radiation of sound is not known, but it may be due to an effective feedback possi-

ble through the low-speed flow on the low-velocity side of the shear layer. This higher

intensity sound in the potential core downstream of the nozzle exit could be important in

facilities with open jet test sections, particularly since the free-stream disturbance

level has a strong influence on model boundary-layer transition locations.

Shear layer. - Mode diagrams of the hot-wire signals through the shear layer are

shown in figure 11. For each diagram curves were faired through the data, and three

points were taken from the fairings and used to calculate the coefficients of a quadratic

fit so that

[F/(VAet) e = C1r 2 + C 2 r + C3  (13)

The coefficients C 1 , C 2 , and C3 were then used to compute iim/il, Tt/Tt,, and RmT

(see eq. (12)) which are shown in figure 12. The solid symbols and dashed-line curves

in figure 11 are points and extensions of the mode diagrams obtained from equation (13)

by using the coefficients C 1 , C 2 , and C 3 .

Near the edge of the shear layer (high-velocity side) the mode diagrams were

linear, as in the potential core, and hence RmT = -1. Note that RmT appears to change

sign at about the location in the shear layer where Tt is a maximum (see fig. 5). Since

m decreases monotonically into the shear layer, this change in sign of RmT is sug-

gestive of an eddy pattern where low Tt eddies on the high-velocity side of the shear-

layer peak Tt are brought in with excess m (and vice versa), and the reverse occurs

on the low-velocity side of the shear-layer peak Tt. In this outer region the density

gradient is a maximum (1 cm < y < 1. 5 cm), and the velocity gradient is small. By

recalling the definition of total temperature, it follows that

t' -1 + M2)'- 1 +y /1M2 (14)

or for large M

Tt 2u'
S(15)
Tt u

Since Tt/Tt,1 is small in this outer region of the shear layer (less than 2 percent; see

fig. 12), then the large mass flow fluctuations must consist predominantly of density

fluctuations. However, it must be pointed out that equation (15) applies only for the Tt'

that are not caused by a moving potential disturbance (see ref. 8 and subsequent equations).

Some contribution to the fluctuations must come from the potential sound field radiated

away from the shear layer, as previously discussed.
11



Farther into the shear layer the mass flow fluctuations reach a maximum intensity

(m/m as high as about 17 percent) and the Tt/Tt,l increase to a maximum measured

value of about 6 percent (see fig. 12). Where the total-temperature fluctuations become

large, the mode diagrams become nonlinear with RmT approaching 1; this is indicative

of vorticity fluctuations becoming an important contribution to the disturbance patterns.

The resolution of the mass flow and total-temperature fluctuations into velocity

and density fluctuations requires some assumption regarding the nature of the disturbances

in the shear layer. Kovasznay (ref. 7) has argued that the expected fluctuations in shear

flows should be primarily entropy and vorticity patterns; however, measurements of

wall-prebSsure fluctuations under turbulent boundary layers and the radiated sound fields

indicate that sound can become an important contributor to the turbulence field at high

supersonic Mach numbers. Kistler (ref. 8) has examined the possible errors involved

in neglecting the pressure fields, and Laderman and Demetriades (ref. 12) have attempted

to obtain an estimate of the importance of pressure fluctuations in a boundary layer at

M = 9.4 by including the assumption that

S 2z 2 (16)

into the analysis of mode diagrams. They concluded that the pressure fluctuation terms

were negligible. Equation (16) was used to estimate levels of pressure fluctuations that

could be induced by the velocity fluctuations (which were calculated with the no-sound

assumption) in the present work and the resulting possible 5/pl were indeed small

(as shown subsequently). However, equation (16) omits the possibility of a sound pattern

moving with some velocity relative to the mean flow, as occurs in the measured radiation

field external to the shear layer. For example, with the hypersonic assumption, M >>1,
the results of Kistler's analysis (ref. 8) (to determine the pressure and total-temperature

fluctuations produced by a potential disturbance pattern moving with a velocity Vs and

producing a velocity fluctuation u') can be written as

= yM2 1 Vs(17)
p1  u1  u1

and

Tt 2f Vs
(18)Tt, l ul ul

Obviously, unless Uli - Vs = O(u'), equation (16) underestimates the pressure fluctuations.

For example, if Vs/i 1 - 0.5 (see ref. 11) is assumed, and then the pressure fluctuations
in the potential core are calculated by using equation (16) and it/Tt,l = 0.30 percent (see

table I), the / Il indicated would be about 0.06 percent; whereas equation (17) would
give about 5 percent, or close to the correct value in table I.
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Apparently, the present information is not sufficient to evaluate clearly the

importance of possible pressure fluctuations, and a measurement of a third flow variable

in addition to the hot wire (p u)' and Tt' is needed. Nevertheless, further discussion

of the present data proceeds on the assumption that the pressure fluctuations are of

secondary importance.

The rms of the velocity and density fluctuations and the correlation coefficient

are shown in figure 13. Note that with the assumption p' = 0, the velocity and density

fluctuations are related to the vorticity and entropy fluctuations by F~ = ar/ilu and

7 = p/Pl (ref. 6). The density fluctuation in percent of the local density reaches a maxi-

mum of about 14 percent in the outer region of the shear layer adjacent to the potential

core and where the mean-density gradients are large. Deeper in the shear layer (toward

the low-velocity side) where the density gradients are small, the density fluctuations

subside. A maximum velocity fluctuation in percent of local mean velocity is not obtained

in the survey region; the velocity fluctuation intensity increases with depth into the shear

layer. The correlation coefficient Rpu changes abruptly from -1 to near 1 (about 0. 85)

in the shear layer. This change suggests that the density fluctuations in the part of the

shear layer where y > 1.5 cm are driven by the velocity fluctuations, as has been

previously observed in turbulent boundary-layer studies (ref. 8). Also shown in fig-

ure 13 are the pressure fluctuations (computed from eq. (16)) which appear small.

In figure 14 the velocity and density fluctuations (in percent of free-stream velocity

and density) are again shown and may be compared with the measurements of Liepmann

and Laufer (ref. 10) at low speeds. The maximum velocity fluctuation intensity measured

by Liepmann and Laufer was about 15 percent and was located at about the point in the

layer where u/u 0. 5 or t = 0; here the velocity gradient is about a maximum also.

The present data indicate a maximum velocity fluctuation intensity also near t = 0,

although measurements in the subsonic portion of the shear layer are needed for confir-

mation. For the present high Mach number shear layer, however, the intensity of the

velocity fluctuations is much less, about a factor of 2 lower than in the low-speed shear

layer. This result is consistent with the observed slower spreading of the Me = 5

turbulent shear layer reported in reference 4. Therein, the experimentally determined

spreading-rate parameter (that is, for the present shear layer) was o = 27 compared

with the low-speed value of about 11. Certainly, the diminished turbulence level should

result in a lesser spreading rate or larger spreading-rate parameter. Kistler (ref. 8),

in his study of supersonic turbulent boundary layers, has also observed a falloff of veloc-

ity fluctuation intensities with increasing Mach number. Gooderum, Wood, and Brevoort

(ref. 13) carried out an experimental investigation into the conditions at the free boundary

of a supersonic jet and also observed a narrower mixing zone and a level of turbulence

somewhat smaller than in low-speed flow.

13



Signal spectra. - At three locations in the shear-layer survey, the hot-wire signal

was recorded on a wide-band tape recorder, and these recordings were used to generate

the signal spectra shown in figure 15. (The wire used in these measurements was not

the one used in the surveys discussed thus far, and it had a small strain-gage oscillation

at a frequency of about 180 kHz.) The three locations were: (1) At the edge of the shear

layer in the potential core, y*/b 2; (2) at the point of peak density fluctuations,

y*/b - 1; and (3) near the point of peak velocity fluctuations, y*/b - 0.2. The spectra of

figure 15 are those of the recorded signal which included the instrumentation noise; the

spectrum of the instrument noise is included in the figure. The frequency, which corre-

sponds to eddies of size b, transported with a velocity ue is also shown in the figure.

Since b is about half the shear-layer thickness, clearly, in the shear layer most of the

turbulence is governed by large-scale eddies, as occurs in attached turbulent shear layers

(ref. 8). Very little energy in the spectrum is observed for frequencies corresponding

to eddy sizes less than about one-third the layer thickness. In the potential core,

y*/b - 2, the spectrum contains even less energy in the high-frequency region than the

spectrum of the signal in the shear layer from the radiation generating sources; Laufer

first observed this deficit of energy at high frequency in studies of the radiation fields of

attached turbulent boundary layers (ref. 14).

CONCLUDING REMARKS

A study of the time-averaged mean flow and the turbulence in a Mach 5 free turbu-

lent shear layer has been performed. Because of the sensitivity of the predicted Mach

number to the combination of variables measured, the present measurements were unable

to determine whether static-pressure gradients exist in the hypersonic shear layer. How-

ever, reduction of the data with the assumption of constant static pressure led to a mean-

velocity profile in similarity coordinates that was in good agreement with the low-speed

profile. The intensities of the velocity fluctuations were about a factor of 2 lower than

the low-speed measurements, but with the maximum velocity fluctuations occurring in

the same regions of the supersonic and low-speed shear layers. A large density fluctuation

was observed in the outer part of the shear layer near the boundary of the shear layer

and the potential core.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., August 30, 1973.
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